$5000 Bounty, Bypassing a Rate Limit Twice

Table of Contents

- Introduction

- What is rate limit?

- Why the rate limit?

- Where to detect?

- Rate limit systems

- Attacks and bypasses

- Additional techniques

- My vulnerabilities (two cases, S5Kk)

Introduction

My name is Behrooz Arya. I'm an employee and a part-time bug hunter, currently 43 years old. About three years
ago, | entered the field of security, and for the past year, I've been working seriously as a bug hunter. I've always
had an interest in security, but | honestly didn’t know where to start. That changed three years ago when | watched
an interview between Mr. Ashkan Rahmani and Mr. Shahinzadeh, where they discussed a roadmap for entering the
field of security. That interview helped me find my direction.

From that point, | began learning and completed several courses, including Security+, CEH, and PWK. Later, |
transitioned to web security with the OWASP and Mr. Shahinzadeh’s HUNT courses. Since | also work full-time, |
dedicate four to five hours a day to bug hunting on a part-time basis.

What is rate limit?

Rate limiting is a method of controlling traffic flow to a service or server by restricting the number of requests that
can be made within a certain time frame. It is an essential technique for preventing resource abuse, ensuring fair
use of services and protecting against DDoS attacks

Why rate limit?
Attacks that rate limiting can help mitigate include:
o DDoS attacks:

In this type of attack, a large volume of requests is sent to the server, it and causing it to crash or become
unavailable.

o Brute force attacks:

These attacks are based on trial and error. The attacker sends numerous different requests in an attempt to
guess passwords or obtain sensitive information.

e Web scraping:

The attacker uses a series of scripts and automation tools to extract large amounts of data from websites.

Where to Detect?
e Login Pages
Bypassing rate limits can allow brute-force attacks on credentials
e Account Registration
Attackers can create multiple accounts by bypassing rate limits
o Password Reset
Allows attackers to trigger multiple password reset emails
e 2FA/OTP
Bypassing rate limiting allows an attacker to use brute force to obtain the correct OTP
e API Endpoints
Rate limits on APl requests, such as data scraping or mass operations
e Voucher Codes, comments, etc

Rate limits should be tested on both voucher codes and comments sections of a website. If
bypassed, an attacker could brute-force discount codes using wordlists to find valid ones or flood
the comments section with spam, overwhelming the site with irrelevant content.

Rate limit systems

e HTTP Packet
- |P-Based Rate Limiting:
If the rate limit is implemented based on the user's [P address, requests are restricted according
to the user’s IP address.
- Session based:
If the rate limit is implemented based on the user session, the number of requests is restricted
for each user as long as their session remains active.
e End user inputs
- Username, email address, phone number, etc:

If the rate limit is implemented based on user inputs, the server restricts the number of requests
associated with a specific identifier, such as a username, email, or phone number.

Attacks and Bypasses

IP-Based?

When the rate limit is implemented based on IP, it may be bypassed using techniques like IP spoofing or
IP rotation.

o |P spoofing with HTTP headers :

In this method, the attacker uses specific HTTP headers to manipulate their IP address, making it
appear as a different IP to the server. This way, the server believes that the requests are coming
from different IPs, effectively bypassing the rate limit restrictions.

X-Original-IP: 127.0.0.1
X-Forwarded-For: 127.0.0.1
X-Remote-IP: 127.0.0.1
X-Remote-Addr: 127.0.0.1
X-Client-IP: 127.0.0.1
X-Host: 127.0.0.1
X-Forwared-Host: 127.0.0.1

Double X-Forwarded-For header example
X-Forwarded-For:

X-Forwarded-For: 127.0.0.1

o [P Rotation:
- Using Tor :

Writeup Abbas.heybati: Bypass Rate Limit Request (fuzzing/etc...) With TOR

- IP Rotate using Burp extension

https://infosecwriteups.com/bypass-rate-limit-request-fuzzing-etc-with-tor-3a285f3980d2

Session hased
o Session Token Abuse:

if the rate limit is implemented based on the user session, it may be possible to bypass it by
changing the session token. This could make the server believe that the requests are coming from
different users, thereby bypassing the rate limit.

e (Changing User-Agent:

By rotating the User-Agent with each request, an attacker can make it appear as though requests
are coming from different devices or browsers. This can sometimes deceive the server into
treating each request as unique, thereby bypassing rate-limiting restrictions based on user
behavior.

User inputs?

1. Appending null bytes or special characters
Adding %600, °%0d%0a, %0d, %0a, %09, %0C, %20

For Example: test@test.com/o00

2. ASCII encoding:
For example: test@test.com => t%65st@te% 7 3t.com

3. Case swapping
For example: test@email.com , teSt@email.com

4. HTTP Parameter Pollution (HPP)

Example:
GET/login/otp/code=123&email=bypass123@mail.com&
or Adding unnecessary parameters to URLs

Example: https://example.com/resource?id=123&random=987

Additional Techniques
¢ URL Manipulation:
- https://example.com/login/
- https://example.com/logiN
- https://example.com/login°/c00

e Changing HTTP request methods:
- GET < POST, PUT < PAICH

e Bypassing Rate Limits with Protocol Downgrading
- HTTP/2 => HTTP/1.
o Bypassing rate limits via race conditions
e Invalid phone Number :
- Registering an invalid phone number in applications that send OTP for login or password reset.
Example: phonnumber="1234567890’°

My Vulnerabilities - Case NO 1

Rate Limiting Missing in OTP Password Reset and Complete ATO

The first vulnerability | want to share with you is related to one of the public targets on HackerOne, which
had no rate limit on OTP reset for passwords, allowing for account takeover. The normal procedure for
resetting the password on this site worked as follows: in the "Forgot Password” section, when a user
entered their email, a six-digit OTP was sent to their email, which remained valid for 30 minutes. If the
entered OTP was incorrect, an "invalid OTP" message would appear in the response, and after five failed
attempts, the user's account would be disabled. If the OTP was correct, an access token would be returned
in the response as shown in the request.

“"type" : "redacted”,

"status": true,

"username” : "redacted-tQcraBUnVHAMq9NDlg6iO9g]l=",
"access_token" : "OaZaeec4-7588-48f0-b304-68cl2c7ececl”,
"userType"” : "redacted"”

To reset the password, it was enough to send the access token value along with a new password in the
request, and the account password would be changed.

POST /[resetPassword HTTP/2

Host: redacted.com

Sec-Fetch-Mode: cors
Sec-Fetch-5ite: same-arigin

Te: trailers

{"token":" OaZaeec4-7588-48f0-b304-68c12c7ecect ", "newPassword":"password"}

The email sent for the password reset mentioned that the OTP was valid for 30 minutes, which made me

think that if | could bypass the rate limit, | could brute-force all six-digit numbers and find the correct OTP.
| tested several methods and realized that the rate limit was based on the user's email.l added special
characters and Null Byte to the email, but | received the message "This email does not exist." | also tried
using ASCII codes for some characters in the email, but it didn't work. Using a mix of uppercase and
lowercase letters in the email also failed.

Then, | used the HTTP parameter pollution technique and sent a request with two username fields. | set the
first username field to a random email and the second one to the victim's email. Every time | sent the
request using this method, | received the "invalid OTP" message, and even after sending more than five
requests, the account was not disabled. To ensure that this bypass method still worked with multiple
requests, | sent 5000 requests via Burp Suite's intruder, and saw that the method still worked.

POST fusers/otpLogin/resetpassword HTTP/2

Host: redacted.com

Sec-Fetch-Mode: cors
Sec-Fetch-Site: same -origin
Te: trailers

{'username™: "anything@mail.com","username”: "victim@mail.com”, "otp™:"111111"}

Since | had found this vulnerability late at night, | decided to report it the next day. However, when | tried
to write the report and prepare the proof of concept (PoC) the following day, | discovered that the bypass
no longer worked. After five requests, the user's account was deactivated for 24 hours. It seemed the
vulnerability had been patched. But | didn’t give up. | created several new accounts and tested various
methods. After five requests, the account was disabled again. | then thought, if | sent the OTP that was
emailed to me in the request, would the "account disabled" message appear again? To my surprise, the
access token was returned in the response. By placing the access token in the password reset request
along with a new password, the password changed, and the disabled account was reactivated.

In fact, even though the account was disabled, if | sent the correct OTP, it was still valid, and the code did
not expire. Since the OTP sent to the email was valid for 30 minutes, | could obtain the correct OTP within
that time. To do this, | wrote a brute-forcing script in Go to try all six-digit combinations. | successfully
found the correct OTP and managed to take over the account. | submitted the report, and it was confirmed.
| was awarded a $3000 bounty for the vulnerability.

My Vulnerabilities - Case NO 2

Bypass of Resolved Report: Missing Rate Limiting in OTP Password Reset Leading
to ATO

In this section, | would like to share details about the second vulnerability | identified. After the previous
vulnerability was patched, | revisited the “Forgot password” section of the website to continue testing. To
my surprise, | found that the OTP verification rate limit had not been applied uniformly: for some accounts
the rate limit had been enforced, but for others there had been no rate limit at all.

Having spent considerable time on this target, | had moved away from registering accounts through the
site’s Ul Instead, | intercepted the signup request in Burp Suite and submitted it directly to create
accounts. Each time | wanted to create a new account, | simply modified the email field while keeping the
other fields unchanged, with the mobile number consistently set to "+111111111." When | then initiated a
password reset request for these accounts, no rate limit was enforced.

POST fusers/register HTTP/[2
Host: redacted.com

Sec-Fetch-Dest: empty
Sec-Fetch-Mode: cors
Sec-Fetch-Site: same-origin

["firstMName""test" "lastMName™”"test” "mobileNumber""+111111111"
Jemail Address""test@mail com","password"."mypassword"}

However, when | created a new account through the site's Ul and subsequently requested a password reset
for that same account, rate limiting was enforced during OTP verification. After four incorrect OTP
attempts, the OTP would expire, and | would need to request a new one.

At first | didn’t understand the reason for this behavior, but further analysis revealed that the site's Ul only
allowed mobile numbers that start with zero, a restriction that is only enforced on the client side. Thus, if
an account was registered with a mobile number starting with "0111111111"," rate limiting was applied
during OTP verification. However, registering or updating an account with an invalid mobile number (one
that didn’t start with zero) allowed me to bypass the rate limit during the reset process..

Bypass: Changing the first digit of the mobile number to + or any number from 1to 9 had made the mobile
number appear invalid to the web application, thereby bypassing the rate limit. Since the OTP had been
sent to both email and mobile, the application hadn’t been able to properly expire the OTP when the mobile
number had been invalid. As a result, even after each incorrect OTP entry, a message had appeared stating
"OTP expired,” yet the OTP hadn’t actually expired, allowing me to brute-force all six-digit codes until | had
found the correct OTP.

To achieve this, | modified the Go script | had previously written to brute-force all six-digit combinations.
Upon execution, | successfully identified the correct OTP and gained account access. | submitted a report,
which was validated, and | received a $2000 bounty for this vulnerability.

